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Background
 Hi t i ll d t h f d t i i th Historically, paradata research focussed at improving the 

current data collection process and practices for CATI 
surveys
• Identified several strategic opportunities for improvement
• Implemented some of them (e.g. responsive collection design, 

time slice, cap on calls, etc.)time slice, cap on calls, etc.) 

 Active management used to monitor data collection 
t d th t t l ti ll dsuggested that resources were not always optimally used 

throughout collection period
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Paradata Sources
 Blaise Transaction History (BTH) file

A d i t d h ti i l d ith f d t ll ti• A record is created each time an open case is closed, either for data collection 
or other purposes - a record is constructed for each call

• Main variables
o Survey cycle Regional Office (RO) ID interviewer identificationo Survey, cycle, Regional Office (RO) ID,  interviewer identification
o Date, start time and end times of the call
o Duration of the call and associated time slice
o Outcome code (e g complete appointment no contact)o Outcome code (e.g. complete, appointment, no contact)

 Interview payroll information
• Total payroll hours represents the hours charged to the survey• Total payroll hours represents the hours charged to the survey

 Historical information since 2003 for all surveys
 Updated on a daily basis Updated on a daily basis
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Key Indicators throughout Data Collection forKey Indicators throughout Data Collection for 
Responsive Collection Design (RCD)

 Key indicators: quality (response rate) cost (% of the budget spent) productivityKey indicators: quality (response rate), cost (% of the budget spent), productivity 
and responding potential of the remaining in-progress cases.

Some Indicators to Identify Start of Responsive Collection Design Phase  
H h ld d E i t S (HES) 2009

100%

Household and Environment Survey (HES) 2009 
Response rate Proportion of budgeted payroll hours

Proportion of regular in-progress cases Average number of calls made on 'regular' cases / cap on calls

Daily productivity
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L L dLessons Learned
 Substantive efforts spent close to the end of data collection yield relatively small 

marginal returnsmarginal returns

 Lots of effort (calls and time) is put on average on cases for which an interview 
is not conducted at the first contact

 Other types of measures showed the same trend
 Average number of days between the nth and (n+1)th calls
 Proportion of cases called on 2 consecutive days
 Proportion of cases called more than x times on a given day 

 Interviewer staffing levels not always optimally allocated with respect to theInterviewer staffing levels not always optimally allocated with respect to the 
workload sample and the expected productivity 

 Develop a draft framework to improve the cost-efficiency of data collection  
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Cost-Efficient Framework

 “Collection process and practices” is not the only dimension Collection process and practices  is not the only dimension 
to take into account to improve the cost-efficiency of data 
collection

 The Cost-Efficiency Framework has 5 dimensions:
1. Metrics used for costing and budgeting surveys
2. Resources allocation within surveys
3 R ll ti b t3. Resources allocation between surveys
4. Collection process and practices
5. Operational constraints
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Two Research Projects
 Simulation project

• Modeling and simulation of survey collection using paradata
• Canada Survey of Giving, Volunteering and Participating (CSGVP)

RDD Survey initial sample ~ 90 000 number of calls ~ 500 000RDD Survey, initial sample ~ 90,000, number of calls ~  500,000
Response rate 54% 
No cap on calls 

 Optimization project 
• Optimizing CATI call scheduling to minimize data collection costs

S f L b d I D i (SLID)• Survey of Labour and Income Dynamics (SLID) 
Longitudinal survey: sample ~ 35,000, number of calls ~ 400,000
Response rate: 72%
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Microsimulation Project
 Recreate CATI collection environment in the call centers

• Model that operates at the case level
• Every call is simulated
• Two parts: modeling and simulation

 Advantages of microsimulation
• Allows manipulation of collection parameters (i.e. different scenarios) in a 

controlled environment
h i f h i i ll i i b• Test the impact of each scenario prior to collection: Many strategies can be 

tested - Not possible in the field (and more costly)
• Can compare the results of many strategies and identify the most promising 

ones
• Can take into account some operational constraints (e.g. capacity)

 Ultimate goal: Make CATI survey collection more efficientUlti ate goal: a e C su vey collectio o e efficie t
• Collection process and resources allocation
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Modeling using Paradata
 Use existing BTH record CSGVP Use existing BTH record - CSGVP

• Call outcome: Multinomial logistic regression
• Call d ration: Create histograms and fit distrib tions for• Call duration: Create histograms and fit distributions for 

each of the outcomes
 Output model parametersOutput model parameters

• Estimated parameters from logistic regression model
• Fitted distribution and parameters

 Input into simulation model
• Create a ‘simulated’ BTH fileCreate a simulated  BTH file
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Modeling using Paradata: Call Outcome
 Multinomial Logistic Regression Modelg g
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• Model probability of outcomes
• k+1 =5 outcomes

o Unresolved, out of scope, refusal, other contact, respondent
7 l t i bl f d t• xi = 7 explanatory variables from paradata

o Time of call(3); afternoon, evening, weekend
o Residential status(1)

C ll hi (3) l d f lo Call history(3): unresolved, refusal, contact
• pj = probability of outcome j
• βij = parameters from logistic regression model 

E ti t d t f d l t d i t i l ti
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Microsimulation
Paradata and Frame Information

 Examples of collection 
parameters
• Distribution of

Model Call Outcomes Model Call Duration

• Distribution of 
interviewers

• Definition of time slices
• Distribution of calls

Model Parameters

• Distribution of calls 
• Call scheduler rules

• Flows and priorities

Simulation Model
Software
 SAS Simulation Studio

C ll ti P t
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Various Scenarios
 Common parameters

• Three time periods for interviewer distribution:
o 9:00-13:00;  13:00-17:00; 17:00-21:0

• 10,000 cases (about 2/3 residential)

40 d f ll ti• 40 days of collection
• Fixed total of 4,800 interviewer-hours
• Limit number of calls to three refusals• Limit number of calls to three refusals
• Interviewer distribution kept fixed throughout data collection
• Time slice strategy kept fixed throughout data collectionTime slice strategy kept fixed throughout data collection
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Results
 Need to have more interviewers in the evening
 Ti li t t d t b li d ith i t i di t ib ti Time slice strategy needs to be aligned with interviewer distribution
 No time slice  (X) approach seems to have best performance

Interviewer Cap on Time Response % % % Interviewer‐Hrs
Scenario

Interviewer 
Distribution

Cap on 
Calls

Time 
Slices

Response 
Rate

% 
Complete

% 
Finalized

% 
Capped

Interviewer Hrs 
Utilization

A 10‐10‐10 X X 66.0% 41.8% 78.5% 10.4% 100.0%
B 10‐10‐10 5, 20 X 64.0% 41.7% 76.6% 23.4% 98.4%
C 12 9 9 X X 66 0% 41 3% 78 7% 11 4% 100 4%C 12‐9‐9 X X 66.0% 41.3% 78.7% 11.4% 100.4%
D 12‐9‐9 5, 20 prop 63.2% 41.1% 76.1% 16.1% 97.4%
E 9‐9‐12 X X 67.5% 42.6% 79.5% 11.2% 100.5%
F 9‐9‐12 5, 20 X 63.8% 41.9% 76.3% 23.8% 97.3%
G 9‐9‐12 5, 20 equal 60.4% 39.8% 73.9% 13.3% 91.7%
H 9‐9‐12 5, 20 prop 63.5% 41.8% 76.0% 17.2% 96.8%

Notes: 1. Response rate = 100 * Complete / (Total  cases  ‐ OOS)
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Optimization project
 Mi i i CATI t f i t Minimize CATI costs for given response rate 

• Model built at aggregated level within each regional office 
• Two parts: modelling and optimization at regional officeTwo parts: modelling and optimization at regional office 

level 
 Advantage of macro level approach

• Provides guidelines of how assignment of CATI 
interviewers can be improved

• Uses operation research procedures for optimization and• Uses operation research procedures for optimization, and 
can be adapted to more complex configurations and 
operational constraints
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Modeling using Paradata
 Use existing BTH record - SLIDUse existing BTH record SLID

• Call outcome success summarized by time slice as probability of 
completing a questionnaire 

• Simple logistic regression or regression 

 Output estimated model parameters
E i d f l i i i d l• Estimated parameters from logistic regression model

• Smoothed probabilities of completing a questionnaire

 Input smoothed probabilities into optimizationInput smoothed probabilities into optimization
• Create optimal CATI mix by time slice subject to cost and operational 

constraints
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M d li P b biliti i P d tModeling Probabilities using Paradata
 Regression n

• Simple: 0 s
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• x = explanatory variables from paradata

* *
0

1

logit  for  1, , ;  
1

n
s

i is
is

p x s S
p

 


 
    

 

• xis  explanatory variables from paradata
- Time of call:  morning, afternoon, early and late evening
- Average cumulative number of calls or unit cost up to and  

including time slice s
• ps = probability of a completed questionnaire within time 

slice sslice s
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Optimizing CATI schedule 
Th t t l d t ll ti t i i b The total data collection cost is given by

d f / f il
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• t1 and t2: costs for success / failure

• : smoothed p’ssp

 The “call” vector                               minimizes f subject to 
• The number of calls for each time slice is greater than or equal to zero, 

and 

 1 2 Sc c cc , , ...,

• The expected response rate                     is equal to a pre-specified 

response rate R. 
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Summary of results for SLID
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Summary of results for SLID

Simple regression

Logistic regression

Observed dataObserved data
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Summary of results for SLID

R i Regression
• Not much difference between using simple or logistic 

regression for this data set: fits are pretty goodregression for this data set: fits are pretty good
• Intercept and continuous variable significant for all regional 

offices
• Best time period for calls depends on regional office: 

Late evening
Morning, early and late evening
All time periods good
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Summary of results for SLID
 OptimizationOptimization 

• Gains between 9%  to 22% possible given no restrictions on 
interviewer allocation to achieve same target response rate
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Summary of results for SLID
 Optimization: Allocation of calls throughout day variesOptimization: Allocation of calls throughout day varies

Edmonton

1000
1100
1200
1300
1400
1500

Actual Number of Calls Made

Optimum Number of Calls to be made
Halifax • Work flow should be uniform 

throughout collection period

100
200
300
400
500
600
700
800
900

1000 throughout collection period
• Calls should be made during 

appropriate periods within the day
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Conclusions and Future Work
Mi i l ti d O ti i tiMicrosimulation and Optimization
 Improve logistic models by adding more auxiliary variables
 Include more complicated collection procedures in the model suchInclude more complicated collection procedures in the model such 

as interviewer characteristics
 Simulate and optimize collection with multiple surveys and 

i t i i d t tl t i t tinterviewers carried out concurrently to gage impact on costs
 Run simulation for a survey to predict outcome and compare with 

actual results from field
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Conclusions and Future Work
I di id l i t f i t i t ti hift ithi th Individual assignment of interviewers to time shifts within the 
day needs to reflect :
• Legal , ergonomic, and operating constraintsg , g , p g
• Minimum and maximum number of days that interviewers work within 

the week
• Shift duration per day (no more or less than a fixed number of hours)Shift duration per day (no more or less than a fixed number of hours), 

including starting time range of each interviewer
• Number of shifts within a day should be reasonable
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Conclusions and Future Work
H d d b ? How do we do above?
• Extend optimization to include mix of interviewers and surveys
• Translate the number of calls within each shift and survey into number y

of required interviewers
• Use commercial software such as XIMES to account for constraints, 

and schedule each interviewer by  time shift (Gartner, Musliu, and y ( , ,
Slany 2001)

Gartner J Musliu N and Slany W (2001) Rota: a research project on algorithmsGartner, J. Musliu, N., and Slany W. (2001). Rota: a research project on algorithms 
for workforce scheduling and shift design optimization, AI Communications, 14, 
83-92
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For more information, please contact

Mik Hidi l Mike Hidiroglou
• mike.hidiroglou@statcan.gc.ca

F i L fl François Laflamme
• francois.laflamme@statcan.gc.ca

él Yves Bélanger
• yves.belanger@statcan.gc.ca
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